///////////////////////////////////////////////////////////////////// // "On the torsion of rational elliptic curves over sextic fields" // // Harris B. Daniels and Enrique González-Jiménez // ///////////////////////////////////////////////////////////////////// // 2/8/2018 - Magma 2.23 // Magma script related to Proposition 8 (s) //f1 is the j-map from X_0(7) to P1 taken from Zywina, On the possible images of the //mod l representations associated to elliptic curves over Q. //f2 is the j-map from X_{20} to P1 taken from Rouse, Zureick-Brown, Elliptic curves //over $\Q$ and $2$-adic images of Galois. F := FunctionField(Rationals()); f1 := (t^2+13*t+49)*(t^2+5*t+1)^3*t^-1; f2 := (-4*t^8 + 32*t^7 + 80*t^6 - 288*t^5 - 504*t^4 + 864*t^3 + 1296*t^2 - 864*t - 1188)/(t^4 + 4*t^3 + 6*t^2 + 4*t + 1); R:=PolynomialRing(Rationals(),2); g:=Numerator(Evaluate(f1,x)-Evaluate(f2,y)); assert IsIrreducible(g); C:=ProjectiveClosure(Curve(AffineSpace(R),g)); Genus(C); _,H,map := IsHyperelliptic(C); G1, m1 := AutomorphismGroup(H); phi := m1(G1.3); G := AutomorphismGroup(H,[phi]); QC, pi := CurveQuotient(G); pts := Points(QC : Bound :=100); E, m2 := EllipticCurve(QC,pts[1]); assert CremonaReference(E) eq "14a4"; assert Rank(E) eq 0; PTS :=Points(E: Bound:=8000); assert #PTS eq #TorsionSubgroup(E); Set := []; PHI := map *pi*m2; for p in PTS do assert RationalPoints(p @@ PHI) subset {@ C![-49/4 , -17/16 , 1], C![-4 , 3 , 1], C![-49/4 , 31 , 1], C![-4 , -3/2 , 1], C![0 , -1 , 1], C![0 , 1 , 0], C![1 , 0 , 0] @}; end for; /* Thus there are 2 non-sinqular points ( [-49/4 , -17/16 , 1], [-49/4 , 31 , 1], [-4 , 3 , 1], [-4 , -3/2 , 1] ), 1 singular point ( [0,-1,1] )and two cusps at infinity ( [0,1,0], [1,0,0] ) */ assert Evaluate(f1,-49/4) eq Evaluate(f2,-17/16); assert Evaluate(f1,-49/4) eq Evaluate(f2,31); assert Evaluate(f1,-4) eq Evaluate(f2,3); assert Evaluate(f1,-4) eq Evaluate(f2,-3/2); assert [Evaluate(f1,-49/4), Evaluate(f1,-4)] eq [ -38575685889/16384, 351/4 ]; //At and Bt give the elliptic model for E_{7,1} from Zywina, On the possible images //of the mod l representations associated to elliptic curves over Q Section 1.4. //These curves have G_E(7) equal to 7B.2.3 according to Zywina Theorem 1.5. At := -27*(t^2+13*t+49)^3*(t^2+245*t+2401); Bt := 54*(t^2+13*t+49)^4*(t^4-490*t^3-21609*t^2-235298*t-823543); A1 := Evaluate(At, -49/4); B1 := Evaluate(Bt, -49/4); A2 := Evaluate(At, -4); B2 := Evaluate(Bt, -4); //We twist by -7 so these elliptic curves have mod G_E(7) equal to 7B.2.1 according //to Zywina Theorem 1.5, E1 := QuadraticTwist(EllipticCurve([A1,B1]),-7); E2 := QuadraticTwist(EllipticCurve([A2,B2]),-7); assert CremonaReference(E1) eq "338b1"; assert CremonaReference(E2) eq "16562be2";